- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002000002000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Sorensen, Mikael (4)
-
Sidiropoulos, Nicholas D. (3)
-
De Lathauwer, Lieven (1)
-
Kanatsoulis, Charilaos I. (1)
-
Sidiropoulos, Nikolaos D. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sorensen, Mikael; Sidiropoulos, Nicholas D. (, IEEE Transactions on Signal Processing)null (Ed.)
-
Sorensen, Mikael; Sidiropoulos, Nikolaos D. (, 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2019)We study the joint low-rank factorization of the matrices X=[A B]G and Y=[A C]H, in which the columns of the shared factor matrix A correspond to vectorized rank-one matrices, the unshared factors B and C have full column rank, and the matrices G and H have full row rank. The objective is to find the shared factor A, given only X and Y. We first explain that if the matrix [A B C] has full column rank, then a basis for the column space of the shared factor matrix A can be obtained from the null space of the matrix [X Y]. This in turn implies that the problem of finding the shared factor matrix A boils down to a basic Canonical Polyadic Decomposition (CPD) problem that in many cases can directly be solved by means of an eigenvalue decomposition. Next, we explain that by taking the rank-one constraint of the columns of the shared factor matrix A into account when computing the null space of the matrix [X Y], more relaxed identifiability conditions can be obtained that do not require that [A B C] has full column rank. The benefit of the unconstrained null space approach is that it leads to simple algorithms while the benefit of the rank-one constrained null space approach is that it leads to relaxed identifiability conditions. Finally, a joint unbalanced orthogonal Procrustes and CPD fitting approach for computing the shared factor matrix A from noisy observation matrices X and Y will briefly be discussed.more » « less
-
Sorensen, Mikael; Sidiropoulos, Nicholas D.; De Lathauwer, Lieven (, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP))
An official website of the United States government
